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Using the method of dual oeriea, solutions are obtained to some problems on the torsion, 

by means of l circular punch, of a half-space with a spherical inclusion. 

The cases of a rigid spherical inclusion and of a spherical cavity are studied. In both 
inntnncso, the problem 1s first reduced to the associated Legendre polynomials and then to 
a F&holm integral equation. The effective solution to the problem is obtained by a series 
expsnsion in terms of a amall parameter which relates the radius of the cavity to the dis- 
tance from its center to the half-space boundary. 

The relations between the angle of twist of the punch and the applied torsional moment 
are found. 

1, Consider a half-space which is attached to a rigid punch and to a fixed spherical 
inclusion, and which is subjected to a torque M applied via the punch. If we assume that 
the angle of twist of the punch is 6, then the stress-deformation state ie defined by the 
function Y G, t) satisfyfng the differential Eq. 

Z; 

Fig. 1 

AU - r-a&J = () 

and the boundary conditions 

Here S and 5’ are respectively, the region under the 
punch and the region exterior to the punch on the plane 
z = 0 while c is the surface of the sphere. 

In seeking a solution, it is convenient to introduce the 
bispberical coordinate system (a, PI 4) defined by For- 
mulas (Fig. 1) 

asinacosIp 
x=chf3-cosa * 

aainaainrp a sh f3 
Y =chf3-cosa * ‘=chS-cosa (1.3) 

(OGPi;pO, O<adfl, --fi<9<4 
Then sepuation of vuiables in (1.1) and application 

of the last condition in (1.2) yields 
00 

Rewriting tba remaining boundary conditions in (1.2) in the form 

(ao<x\(Jt) 

160 
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(1.6) 

we obtain the following dual series Eqs. (*): 

5 4 sh (n + VS) &Pm1 (cm aj = af) sin u 

v’z (i 
(ao<afn) (1.7) 

73-l - cos at'!' 

set 

(u f ‘IS) -4, ch (n + I/$) p0 Pi (CDS a) = 0 (0 < a < a01 (1.8) 

n=1 

n 

A,, ch (n i- ‘/a) PO = s 9 (1) sin (n + l/s) t dt 

=e 

Then (1.8) is satisfied as a result of the relations [ll] 

(1.9) 

(1.10) 

~eos(n+~)tf,(~:usa)=O, t>a 
n=o 

(l.il) 

The second of the dual series relations (1.7) may be transformed with the aid of ~Formr 

10s f123 

(1.13) 

into the form 

dn- 

dZ. yccoau-cosz s 

dz 

a 

x 

cp(tf[rl(t--z)--((f~tr)ldt 
I UC8 

=-** (1.14) 

(1.15) 

Integrating (1.14) with respect to A, we obtain Abel’s integral Eq. 
n 

dx 
co8a _ cosI rp (4-f i9 ml (t--z)--rl (t -i- w} = - v’ 12Ecosa + co (i.18) 

The solution of this equation-may be reduced, after some manipulation, to a Fredholm 
integral equation in 4 (x) 

+I 

x 

w--pj cP(t)I?(t--I)-r((t+x)ldt= 

=+f2sirLj--$tta&z @0<r<N (f.17) 

The constant co in the right-hand side of the equation is determined from the supplemsn- 

Dual series of the functions Pm, (COB CL) for the cases of m = 0 and m = 1 are examined 
in detail in [l to 61. The case of arbitrary m is examined in [7 to IO]. 
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tary integrability condition of %/a/? for p = 0 in the region a, < u < c (This condition is 
equivalent to the requirement that the applied torque on the punch be finite). We now utilize 
(1.9) to (1.11) and Formula 

2 cos (n + I/?) ‘Pn (COB or) = f 
t<a (1.18) 

n=o I)/2 (co5 t - cos a) ’ 
The Expression 

all 

ap s=o 1 = - I/s v 1 - cos a -jj A, (n + ‘h) ch (n + ‘/?) &JPn’ (cos a) 
(1.19) 

is reduced to the form 

av 
ap g=o I =- vi--0sa i d 1 cc 

(Pw);r;)/COSuo__osa +da I rp’ (1) dt 

J cost-co9 a 1 
(1.20) 

In order that the above mentioned condition be satisfied, it is clearly necessary to set 
in (1.20) 

‘p @o) = 0 (1.2$) 

This is the condition for the determination of co. 

Now the moment M is easily found: 

6 

(1.22) 

Here G is the shear modulus and b is the radius of the,~punch. 
From (1.20) and (1.21) we have 

a 
a/~ cp’ (t) fit 
al =-- I l- COSU a/, 

r=o a I ap 3-o 
- - &-COS+& ’ \ 

CLa f 
cost- COSd 

so that 

n 

M = ZnGn? \ 
sine 3 d a 

- 
;;O(~-cos~)“~ dx (1 

(PC tr) dt 

~~1/COSl-c,,sz d” ) 
(1.23) 

Integrating by parts and inverting the order of integration, we obtain the relation between 

the moment M and the angle of twist 6 

. M = 2nCa2 
a 

cp w 
sins (t/2) dt 

b” 
(1.24) 

Thus, the solution of the problem has been reduced to a Fredholm integral Eq. (1.17) 
which generally has to be solved by numerical methods. Here, there is an additional diffi- 

culty, since the kernel does not appear in explicit form. Nevertheless, for suitably small 

values of the ratio p /l, the method of successive approximations can be effectively applied. 

As a preliminary step, expand the kernel in (1.17) in a power series a = exp (- ,Bd 

? 0 - x) - 11 (t + 5) = 2 [(e - 3 + es - . . ,) sin Y,f sin I/% 2 + (1.25) 

+ (es - ee + . . .) sin V,t sin a/a I + (eb - ~10 + . . .) sin b/, t sin b/1 t + . . . 1 
The relations between the quantities CZ, and (so and the geometric parameters are given 

by 

$=ch&, 
,:1 

tb - 
cth p0 

ctg ‘k Q 

To conform with the above, let ua also expand (b(z) and co into similar series. Then 

(1.17) takes the form 
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x (c-ee”+@-...)si*+ 
II 

sin ~9(ea-~a~...)Sin~Si*~ f(eS-&lo+...)X 

5t 
X sin 2 sin 2 +. . .] dt + 9 sin 3 (cm + Cole + cO+l + . . .) -T s& (f.26) 

Equating coefficients of like powers of the parameter, we obtain for the zeroeth approxi- 

mation 

(1.27) 

x 

* MO = 2nGa” 
% (t) 

din (sin I/~ ,+)a dt = y GW (1.28) 

Formula (1.28) coincides with the known expression for the torsional moment in the 
case of a continuous half-space. 

Successive approximations yield 

‘p1 (z) = ‘ps (2) = 0, ‘px (5) = 166an-a(sinuo - n: + tlJ sin ‘ln 2 (co9 2 - cc9 %) (1.29) 

Consequently, the first correction to the moment Mc is of third order of smallness, so 

that we have, with a good degree of accuracy 

M s le/3 G6ba (1 + A), A=12 es& (tg 1/aa0)3 (sina, - a’t + ao)a (1.30) 

Values of the correction A for some values of p/1 and b/l are given below. 

p.‘I=o:tl 0.7 0.8 

A = 0.012 0.031 0.082 (b/l = ‘13) 

A = 0.027’ 0.059 0.13J (b/l = ‘1.:) 
A = 0.048 0.085 0.147 (bJl = 1) 

The quantity 1+ A characterizes the magnification of the moment M associated with the 
effect of a rigid, stationary inclusion. 

Note that the proposed method could also be used in the solution of a more general prob- 
lem in which torsional moments M and M’ are applied to both, the punch and the inclusion. 
Whereupon, two angles of rotation 6 and 6 for the punch and the inclusion, respectively, 
must be introduced, so that the last condition in (1.2) is no longer homogeneous, Upon cal- 
culation of the moments M and M’, we obtain a system of equations with the two unknowns 
6 and 6’. The case examined above corresponds to w= 0, so that calculations of M’may 
be based on the solution previously obtained. 

2. We will now obtain the solution for the twisting by means of a round punch of a half- 
space with a spherical cavity whose surface is stress-free. 

Instead of utilizing tbe stress function @ which is generally used in problems of this 

type and which satisfies Eq. [13] 

**-$?&0 (2.1) 

it is convenient in this case to introduce another function w (r, t) defined as 
@=I-‘% (2.2) 

It is easily verified that w satisfies Eq. 

AW- 4l-au,=0 (2.3) 
and, consequently, may be represented in bispherical coordinates by the series 

co 

w= J6v chp-cosa 2 [A, sh (n + ‘/a) (PJ - P) + B, Sh (n f l/3) PI %’ @OS ~1 (2.4) 

n-a 
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Employing known relations from torsion theory (137, the boundary conditions for U(U , 0) 
become 

I* I @I,,, = 0 (a,<aBnf (2.5) 

w 1 B=IIo = C (1 - cos I@ 10% sina a (0 b;a <aa) (2.6) 

r&&r= 0 (O<a<Jtf (2.7) 

Formulating the expression for the moment due to the loading on a hemisphere of arbi- 
trary radius with the center at the origin, we can obtain the following relation between C 
aad the torsional moment M: 

C= - ‘&M / nC (2.8) 
The condition (2.7) yields B, = 0. Whenapon (2.5) and (2.6) lead to a system of dual 

series in A,: 
co 

x.4, ah (n + t/r) PoP,~ (co8 a) = 5 (I is?$ x’ “’ 
v2 

(0 6 a < ao) (2.9) 

nP2 

A,, (n + l/2.) ch (n + l/cl) pop,’ (cos a) = 0 PO < a 6 4 (2.10) 

n=3 
By setting 

(2.11) 

and taking into account tbc relation 

Pn’ (h) = (I- 312) 6 p, (Q, h = cos u (2.12) 

aa well aa (1.12), (2.10) is identically satisfied. Taking note of (2.12). (1.11) and (Llg), 
and employing the integral representation 

(2.13) 

(2.9) is transformed into tbe form 

Here, the function ‘I is defined, as before, by (1.15). 
Integrating (2.14) twice with respect to A, we obtain Abel’s integral Eq. 

8 Is 

s dx 

ov 
cosx-co8 a { tp(x)-$5 0 (t) ill (t -I- r) + 9 (t - x)1 dt} = (2X9 

0 

Solving the preceding equation, we obtain, as in Section 1, a Fredholm Me&al equation 
for d(x) 

a. 

c 
= 7 sin* 

v’s 
-2c*r)c#B~+-;;-c¶eos~ (2.16) 

The constants ct and c9 in (2.16) are obtained from the supplementary intsgrability COII- 

dition for 8$/& in the region I = 0, exterior to the punch ($ is the displadement fauction 
rm. 
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Note that this requirement represents tbe condition that the angle of twist of the punch 

#be finite. 
Utilizing the relation between $ and @: 

ag 1aal 1 a 
as- ---L=:--- 

~3 an + an (r3W) 
we conclude that 

(2.17) 

Here h is the Lam& coefficient. 
Taking into account (2.4), (2.11), (2.12) and (1.121, we obtain after some manipulation 

C3W 

app=o=- I 
IfI 

Td2 $0 
~__ - cos a sin” a d (cos x)9 

[ 

‘p (a01 
1/ -- 

cos a - cos a0 s 

cp’ (0 dt 

Y 
cosu- cost 1 (2.19) 

so that we must have 

cp (ao) = 0 (2.20) 

Further, integrating (2.19) by parts, we obtsin 

8W 

@- +a I 
= 1/1-CosclsirPa 

CP 

d (cos a)3 2V cosa- c,o!j S&J ‘p: (a) -- 
sin a0 

-z~(~); vcosa-cos tdt] 

From which it follows that: 

V’ (a01 = 0 

(2.21) 

(2.22) 

Thus, (2.20) and (2.22) serve to determine c1 and c2’ whence tbc formula for a$/ds 

takes the form 

atp I 2 (I? ’ 
3F $_=o = 2 (l - cos c@*sin a - 

40 q)‘(l) 

d (cos a)” ?[ 1 sinf v cosa-cost& (2.23) 

From (2.23), the relation between the angle of twist 8 and the moment M is easily ob- 
iained. Indeed, integrating (2.23) in the region 0 = 0, 0 < a < ao and taking into account 

tbe fact that $ + 0 at infinity, we obtain 

?aJ1 
\ 
6 

XdS’TT4 (2.24) 

Substituting (2.23) into (2.24), we obtain after some manipulation 

e=--+l(O) (2.25) 

The quantity t$(O) is proportional to the moment M, so that (2.251 is the desired relation. 
To obtain an effective solution to this problem in a manner similar to that of Section 1, 

we expand tbc functions q and $ and the constants ct and cz in power series of e = e-@*. 
Matching coefficients of like powers of in (2.16), we obtain for the zeroetb approximation 

c 2 Jf/z 
cp0 (z) = 2 sin3 - - If2 

2 y(i--2cosz) cos; clo+-;i-cos~czo (2.26) 

Upon determining cl0 and cxo from (2.20) and (2.221, we obtain the first relation in (1.28). 

which corresponds to tbe case of a half-space without a cavity, Additional computations 

yield 
(2.27) 

so that tbc correction to the moment in this case is of fifth order of smallness. 
Tbe approximate formula for tbe moment M takes the form 
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The coefficient 1 - A indicates the decrease in the moment required in order to obtain 
an angle of twist 6 for the half-space, taking into account the effect of a spherical cavity 

with a stress-free surface. 

Values of A for certain values p /l and b/l are given below. 

p/l - 0.6 
I 

0.i 
I 

0.6 

AzO.003 0.012 0.038 (b/l = ?G 
A ~0.005 o.oi0 o.tt41 (b/l =‘/s) 
A=O.808 0.008 0.014 (b/l = i) 

In conclusion, we note that the dual series method is also applicable to the cam in 
which shearing stresses are applied to the cavity surface, 
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